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FEM-based reduced-order model for steady-state 

skin-effect analysis in lossy lines 
Francesco Bertazzi, Francesco Carbonera, Michele Goano, and Giovanni Ghione 

Absrmcr-A quasi-static finite element technique is proposed for the ac- 
curate and efficient computation of the frequency-dependent characteris- 
tic parameters of lossy transmission lines having electrodes of arbitrary 
cross-section on multi-layered, planar or non-planar substrates. A novel 
formulation of the magneto-quasi-static problem is combined with a ro- 
bust fast frequency-sweep technique based on the numerical generation of 
problem-matched basis functions. The proposed technique enables to accn- 
rately model the frequency-dependent penetration of electromagnetic fields 
inside lossy conductors with a reduced set of problem-specific functions. 

Extensive comparisons are provided between state-of-the-art full-wave 
finite element method and the present technique: excellent agreement is 
demonstrated with the full-wave solution, at a fraction of its computational 
cost. 
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I. INTRODUCTION 

The design of microwave integrated circuits demands accu- 
rate mbdeling tools. General models are necessary to deal with 
arbitrary cross sections, anisotropic substrates with dielectric 
losses, and metallic regions of finite conductivity whose thick- 
ness may be smaller or larger than the skin penetration depth 
within the frequency range of interest. Among suitable analy- 
sis techniques, the finite element method (FEM) probably is the 
most flexible and powerful. 

In the conventional till-wave FEM, the transverse component 
of the electric (magnetic) field is expanded with curl-conforming 
vector elements of order p [ 11, whereas the longitudinal compo- 
nent is represented with conventional scalar elements of order 
p +l . Once the simulation region has been divided into a num- 
ber of such hybrid elements, application of Galerkin’s criterion 
to the vector wave equation yields a sparse generalized eigen- 
value problem, whose solutions are the complex propagation 
constants of the guided modes of the structure [2-S]. The re- 
sulting large-scale eigenvalue problem may be efficiently solved 
via the implicitly restarted Amoldi method [6]. Nevertheless, 
the full-wave approach is still too computationally expensive for 
the direct inclusion in CAD tools for circuit analysis and design. 
In the present paper, we propose a fast and accurate quasi-static 
FEM technique for the extraction of the frequency-dependent 
characteristic parameters of lossy inhomogeneous transmission 
lines. 

When quasi-TEM wave propagation is assumed, the compu- 
tation of the electric field reduces to the electrostatic problem 
governed by Laplace’s equation, and the vector magnetic po- 
tential has only one component along the propagation direction, 
which satisfies the well known integrodifferential equation gov- 
erning the 2-D eddy-current problem [7]. In the present pa- 
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per, the skin-effect problem is solved via a superposition ap- 
proach. In contrast with the integrodifferential formulation, 
our approach leads to a sparse finite element equation. Al- 
though modal dispersion is negligible for quasi-TEM lines, skin- 
effect losses are responsible for strong dispersion from the low 
frequency RC range to the skin-effect LC regime. Since we 
are concerned with the computation of the circuit parameters 
of the line versus frequency, we have developed a robust fast 
frequency-sweep technique based on the numerical generation 
of problem-specific basis functions [8], thus drastically reduc- 
ing the computation time. The proposed approach preserves the 
sparsity of the problem, and allows for a drastic reduction of the 
number of basis functions without loss of accuracy. The new 
technique has been validated against full-wave analysis: excel- 
lent agreement is demonstrated with the full-wave solution, as 
long as modal dispersion is negligible. 

The paper is structured as follows. In Section II, the novel for- 
mulation of the eddy-current problem is derived. In Section III, 
problem-matched basis functions are numerically generated via 
the singular value decomposition (SVD). Two examples, a cylin- 
drical wire and a ridge-type coplanar waveguide for electro- 
optic applications, are discussed in Section V. Some concluding 
remarks are fmally reported in Section VI. 

II. EDDY-CURRENT FORMULATION 

Consider a microwave transmission line consisting of an ac- 
tive conductor and a number of ground electrodes, embedded in 
a lossy, non-homogeneous dielectric medium, characterized by 
diagonal permittivity and permeability tensors [El, [CL]. Dielec- 
tric losses are included in the imaginary part of the permittivity 
tensor. Let us assume that the line is uniform along the z-axis, 
and let the electrodes have arbitrary cross-sections & and finite 
conductivity u. 

In the present formulation, a vector potential A’ and a scalar 
potential 4 are chosen as unknown variables. They are defined 
through the electric and magnetic fields as 

1 

z=vxx 
E = - jwki - 04. 

(1) 

From potential theory, it is well known that the vector poten- 
tial A’ is not unique unless a gauge condition is imposed. If  the 
Lorentz condition is used, an inhomogeneous Helmholtz equa- 
tion for the magnetic potential A’ is derived [9] 

v2A’+cIJ2[p][z]fi= -[/A]&. (2) 

When quasi-TJM wave propagation is assumed, the source cur- 
rent density J, has only one component along the z-direction, 
and is constant over each conductor 
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where Jf’ are the source current density values on the elec- Once equation (9) has been solved for the coefficients C,, the 
trodes. Thus, neglecting displacement currents, (2) simplifies unknown potential A may be derived from the superposition 
to principle (8). 

V2A - jwpaA = -pJf’ 

V2A=0 

v&Y) E flk 

vbc,Y) E fld (4) 

where & denotes the dielectric region outside the metallic ma- 
terials. In equation (4) the unknowns are the potential function 
A(z, y) and the frequency-dependent source values Jf’. The 
total average current density Jk = Ik/Sk over each electrode 
may be computed as 

Jk = JF’ - jwn& 

where & is an average value 
t-th electrode cross-section 

of the magnetic potential over the 

/ir, = -$ 
II A@, y)da: dy. nr (6) 

Solving (5) for Jf’ and substituting into (4), we get the well- 
known integrodifferential equation governing the 2-D eddy- 
current problem [7, IO] 

V2A - jwpaA + jwpc& = -pJk v&Y) E ok 

V2A = 0 v(? Y) E ode (7) 

Equation (7) contains only the unknown A, and the forcing 
terms are the total currents Ik = JkSk flowing in the conduc- 
tors. 

The .flnite element discretization of the integrodifferential 
equation (7) would lead to a sparse coefficient matrix, if not 
for the dense contribution deriving from the average values &. 
In the integrodifferential approach, the unknowns Jf’ are elim- 
inated at the expense of the matrix sparsity. However, notice 
that if the source values Jf’ were known a priori, one could 
directly solve equation (4) for A. The basic idea is to represent 
the magnetic potential A as the superposition of two linearly 
independent solutions of equation (4), obtained by setting unit 
source current density in the active electrode and in the ground 
conductors successively 

Owing to the linearity of the operators in (7), equation (5) may 
be expanded as 

I = (1 - jwoAhi)ShCr + (-jw0Aha)ShCs 

-1 = ~(-jWoAkl)SkC1 + x(1 -jWoAkZ)skc2 (9) 

k#h k#h 

where I is the total current carried by the active electrode (h-th 
electrode) which flows back in the ground conductors, and 

h&, dda: dy (10) 

After a suitable choice of the basis functions, the application 
of Galerkin’s procedure to the equation (4) yields the following 
system of matrix equations [7] 

(S-jwoT).A,=&), 77x=1,2 (11) 

where Jk) originates from the imposed source current density 
distribution on the electrodes, and S, T are sparse matrices, 
whose analytic expressions can be found in [7], if Lagrange 
polynomials are used to expand the unknown. Notice that the 
finite element equation (11) may be efficiently solved for any 
source current distribution, once a sparse factorization of its co- 
efficient matrix has been obtained. The solution vector A in- 
duced by the imposed currents Jk may be derived from the su- 
perposition principle (8) and (9). 

III. REDUCED-ORDERMODEL 

Since we are concerned with the computation of the circuit 
parameters of a line versus frequency, the analysis should be re- 
peated for many frequency sampling points in the range of inter- 
est. Recently, a novel technique for the numerical generation of 
an orthonormalized set of problem-matched basis functions has 
been introduced with application to the scattering problem [8]. 
The basic idea is the generation of problem-specific basis func- 
tions based on the exact analysis in a few frequency points cho- 
sen in the range of interest. These basis functions are extremely 
efficient in the representation of the unknown, thus drastically 
reducing the CPU-time. In this paper, the concept of problem- 
matched basis functions is applied to eddy-currents computa- 
tions. 

We evaluate the potential fimction A, via the standard FEM, 
at P frequency points w = wi . . up chosen in the band of in- 
terest. The FEM solution vectors A(wp) are arranged column- 
wise in a matrix X, which is then subjected to the economy-size 
Singular Value Decomposition (thin SVD) [ 111: 

x=uxv+. (12) 

The columns of U are the singular vectors, and the diagonal el- 
ements of matrix I: are the corresponding singular values. The 
singular values measure the significance of each singular vec- 
tor in the representation of the unknown. Since they range over 
several orders of magnitude, not all of them are needed to get 
accurate results [3]. Let then Q 5 P be the number of singu- 
lar vectors assumed to be adequate to represent the unknown. 
The selected singular vectors define a set of problem-matched 
basis functions of the subspace 5 that contains the potential rep- 
resentation, at least in the band of interest. The restriction of the 
large-scale equation (11) in the subspace Z yields the reduced- 
order model 

(U&!WQ - jwa UATUQ) a, = U&J,f$’ (13) 

where matrix UQ consists of the first Q singular vectors se- 
lected. Equation (13) has size Q x Q, and may be easily solved 
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by a direct method for each frequency value. Moreover, by in- 
spection of the dynamic range of the singular values, the ac- 
curacy level of the procedure can be controlled: if the singular 
values have a small dynamic range, not enough information has 
been acquired, and the frequency sampling rate should be in- 
creased. 

IV. EVALUATION OF THE QUASI-TEM LINE PARAMETERS 

The evaluation of the quasi-TEM line parameters requires the A. Cylindrical wire 

nite element discretization of Laplace’s equation yields the ma- 
trix equation K 4 = q, where K is a sparse matrix and the 
column vector q originates from the applied voltage V, and cor- 
responds to the surface charge distribution on the electrodes [S]. 
Since dielectric losses are described by a frequency-independent 
loss tangent, also Laplace’s equation does not depend on fre- 
quency. The p.u.1. admittance Y = g + jwC may be computed 
from the complex electrostatic stored energy as 

(B + jwC) V,” = jw(4+ K 4). (14) 

Notice that the p.u.1. conductance g is a linear function of fre- 
quency. If, on the other hand, dielectric losses are modeled as 
a constant conductivity, Laplace’s equation bec.omes fiequency- 
dependent, requiring fast-sweep solution techniques similar to 
those described in Section III. 

The p.u.1. impedance 2 = R + jwC may be computed from 

-g = (C, - C2)/c7 = (R + jwC)I (15) 

Notice that, once the set of problem-matched basis functions has 
been defined, the evaluation of the average values &,, and all 
postprocessing computations may be performed directly in the 
reduced-order representation. 

IO" IO' IO' IO" 
frequency, kHz 

Fig. 1. Comparison between tbe p.u.1. resistance R and p.u.1. internal in- 
ductance Li versus frequency of a copper cylindrical wire (radius k = 5 mm, 
conductivity Q = 5.8 x 10’ S/m) computed analytically and with the present 
numerical approach. 

V. RESULTS 

In order to show the effectiveness of the proposed numed- 
Cal technique, we analyze two different structures, a cylindrical 
wire and a coplanar waveguide on a lithium niobate substrate 
with application to electro-optic devices. Excellent agreement 
is.demonstrated with the full-wave solution, at about one tenth 
of its computational cost. 

We consider a copper cylindrical conductor with radius r = 
5 mm, and conductivity u = 5.8 x lo7 S/m. We have com- 
puted the potential function A at the frequency points f  = 
0.1, 1, 10, 100, 1000 kHz. The singular values range over five 
orders of magnitude, which confirms that the frequency sam- 
pling rate is adequate to represent the solution over the selected 
frequency range. Fig. 1 compares the series parameters R and 
Ci evaluated with their exact analytical expressions [9] and with 
the present quasi-static FEM approach with Q = 5 problem- 
matched basis functions (all the singular vectors have been re- 
tained). The p.u.1. resistance R asymptotically behaves as fl 
in the skin-effect regime, and reaches the DC limit according to 
a complex and conductor shape-dependent frequency behaviour. 
The p.u.1. internal inductance Ci has been computed integrating 
the magnetic energy over the conductor cross-section [12]. As it 
can be observed, the frequency variations of the circuit param- 
eters are represented without loss of accuracy with just Q = 5 
problem-matched basis functions. 

Fig. 2. Cross section of a ridge-type CPW. The geometrical parameters are: 
t=10~m,W=8~m,G=15~m,to,=1.2~m,h=3.3~m,s=~~m, 
a = 70 degrees. 

B. Ridge modulator 

State-of-the-art electro-optic modulators on LiNbOa sub- 
strates are now reaching bandwith performances in excess of 
40 GHz with driving voltages around 5 V. The design and op- 
timization of such structures demand precise modeling of their 
microwave propagation characteristics because of the contrast- 
ing requirements in terms of velocity matching, low microwave 
,attenuation, and good superposition between the optical and the 
microwave fields. 

Recently, a novel ridge-type lithium niobate modulator has 
been introduced to achieve low drive voltage and broad band 
operation [ 13,141. In this structure (see Fig. 2), synchronous 
coupling with the optical signal is achieved removing the high 
dielectric constant lithium niobate around the center conductor, 
and inserting a low dielectric constant SiOz buffer layer under- 
neath’the electrodes. 
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The microwave effective index neRr the attenuation constant 
o (dB/cm), and the characteristic impedance 2 (a) of the CPW 
in Fig. 2 have been computed versus frequency, with the present 
approach (QS-FEM) and with the full-wave technique (FW- 
FEM) [3]. The results are shown in Fig. 3. The gold electrode 
conductivity is u = 4.1 x 10’ S/m. The relative permittivities 
of the Z-cut X-propagating LiNbOs substrate are 28 and 43 per- 
pendicular and parallel to the substrate surface, respectively, and 
the lithium niobate loss tangent is tan S, = 0.004. The relative 
permittivity of the SiOa buffer layer is eT = 3.90, and the loss 
tangent is tan &, = 0.016. 

An excellent agreement may be observed between quasi- 
static analysis, the full-wave solution [3], and the results pre- 
sented in [5]. The small discrepancies, arising at higher fre- 
quencies between the quasi-TEM model and full-wave solu- 
tions, are related to the onset of higher-order substrate modes. 
The electromagnetic behaviour of the waveguiding structure is 
accurately represented with Q = 8 problem-matched basis func- 
tions, over a bandwidth of 100 GHz. 

3, ,I0 

1 10 
frequency, GHz 

1 10 
frequency, GHz 

Fig. 3. (a) Microwave effective index n,n. attenuation a (dB/cm) and (b) 
characteristic impedance 2, (D) of the ridge-type CPW of Fig. 2 , computed 
with the full-wave FEM approach (FW-FEM), and the present magnetoquasi- 
static model (QS-FEM). 

VI. CONCLUSION 

We have developed a FEM-based fast and accurate reduced- 
order model for the computation of the frequency-dependent 
characteristic parameters of lossy inhomogeneous transmission 
lines. In contrast with conventional quasi-TEM approaches, 
the present technique is able to capture the electromagnetic be- 
haviour of the waveguiding structure from the low-frequency 
RC range to the skin-effect LC regime. Excellent agreement 
with full-wave methods is achieved, at a fraction of their com- 
putational cost. 
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