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FEM-based reduced-order model for steady-state
skin-effect analysis in lossy lines
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Abstract—A quasi-static finite el que is proposed for the ac-
curate and efficient ation of the freq y-dependent characteris-
tic parameters of lossy transmission lines having electrodes of arbitrary
cross-section on multi-layered, planar or non-planar substrates. A novel
formulation of the magneto-quasi-static problem is combined with a ro-
bust fast frequency-sweep technique based on the numerical generation of
problel tched basis functi The proposed technique enables to accu-
rately model the frequency-dependent penetration of electromagnetic fields
inside lossy conductors with a reduced set of problem-specific functions.

Extensive comparisons are provided between state-of-the-art full-wave
finite element method and the present technique: excellent agreement is
demonstrated with the full-wave solution, at a fraction of its computational
cost.

Keywords—Coplanar waveguides, skin-effect, model reduction.

1. INTRODUCTION

The design of microwave integrated circuits demands accu-
rate modeling tools. General models are necessary to deal with
arbitrary cross sections, anisotropic substrates with dielectric
losses, and metallic regions of finite conductivity whose thick-
ness may be smaller or larger than the skin penetration depth
within the frequency range of interest. Among suitable analy-
sis techniques, the finite element method (FEM) probably is the
most flexible and powerful.

In the conventional full-wave FEM, the transverse component
of the electric (magnetic) field is expanded with curl-conforming
vector elements of order p [1], whereas the longitudinal compo-
nent is represented with conventional scalar elements of order
p+1. Once the simulation region has been divided into a num-
ber of such hybrid elements, application of Galerkin’s criterion
to the vector wave equation yields a sparse generalized eigen-
value problem, whose solutions are the complex propagation
constants of the guided modes of the structure [2—-5]. The re-
sulting large-scale eigenvalue problem may be efficiently solved
via the implicitly restarted Arnoldi method [6]. Nevertheless,
the full-wave approach is still too computationally expensive for
the direct inclusion in CAD tools for circuit analysis and design.
In the present paper, we propose a fast and accurate quasi-static
FEM technique for the extraction of the frequency-dependent
characteristic parameters of lossy inhomogeneous transmission
lines.

When quasi-TEM wave propagation is assumed, the compu-
tation of the electric field reduces to the electrostatic problem
governed by Laplace’s equation, and the vector magnetic po-
tential has only one component along the propagation direction,
which satisfies the well known integrodifferential equation gov-
erning the 2-D eddy-current problem [7]. In the present pa-
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per, the skin-effect problem is solved via a superposition ap-
proach. In contrast with the integrodifferential formulation,
our approach leads to a sparse finite element equation. Al-
though modal dispersion is negligible for quasi-TEM lines, skin-
effect losses are responsible for strong dispersion from the low
frequency RC range to the skin-effect LC regime. Since we
are concerned with the computation of the circuit parameters
of the line versus frequency, we have developed a robust fast
frequency-sweep technique based on the numerical generation
of problem-specific basis functions [8], thus drastically reduc-
ing the computation time. The proposed approach preserves the

_ sparsity of the problem, and allows for a drastic reduction of the

number of basis functions without loss of accuracy. The new
technique has been validated against full-wave analysis: excel-
lent agreement is demonstrated with the full-wave solution, as
long as modal dispersion is negligible.

The paper is structured as follows. In Section II, the novel for-
mulation of the eddy-current problem is derived. In Section III,
problem-matched basis functions are numerically generated via
the singular value decomposition (SVD). Two examples, a cylin-
drical wire and a ridge-type coplanar waveguide for electro-
optic applications, are discussed in Section V. Some concluding
remarks are finally reported in Section VI.

II. EDDY-CURRENT FORMULATION

Consider a microwave transmission line consisting of an ac-
tive conductor and a number of ground electrodes, embedded in
a lossy, non-homogeneous dielectric medium, characterized by
diagonal permittivity and permeability tensors [€], [u]. Dielec-
tric losses are included in the imaginary part of the permittivity
tensor. Let us assume that the line is uniform along the z-axis,
and let the electrodes have arbitrary cross-sections §2;; and finite
conductivity o. .

In the present formulation, a vector potential A and a scalar
potential ¢ are chosen as unknown variables. They are defined
through the electric and magnetic fields as

{ B=VxA
E=—jwA-V¢.
From potential theory, it is well known that the vector poten-
tial A is not unique unless a gauge condition is imposed. If the
Lorentz condition is used, an i@omogencous Helmholtz equa-
tion for the magnetic potential A is derived [9]

VA + ][4 = —[u)J;. @

When quasi-TEM wave propagation is assumed, the source cur-
rent density J; has only one component along the z-direction,
and is constant over each conductor

To=00% V(z,y) €
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where J,Es) are the source current density values on the elec-
trodes. Thus, neglecting displacement currents, (2) simplifies
to .

V(zvy) € Qk
Y(z,y) € Qq

V2A - jwpcA = —,uJ,ﬁ’)
ViA=0 @)
where {24 denotes the dielectric region outside the metallic ma-
terials. In equation (4) the unknowns are the potential function
A(z,y) and the frequency-dependent source values J,ﬁ”. The
total average current density J, = Ii/Sk over each electrode
may be computed as
Tk = I — jwo Ay 5)
where flk is an average value of the magnetic potential over the
k-th electrode cross-section

Ap = X // A(z,y)dz dy.
Sk JJa,

Solving (5) for J,g’) and substituting into (4), we get the well-
known integrodifferential equation governing the 2-D eddy-
current problem [7, 10]

(©)

v2A — jwpc A + jwpo Ay = —pdg
ViA=0

V(miy) <€ Qk
V(z,y) € Q. (7)

Equation (7) contains only the unknown A, and the forcing
terms are the total currents I, = JiS flowing in the conduc-
tors.

The finite element discretization of the integrodifferential
equation (7) would lead to a sparse coefficient matrix, if not
for the dense contribution deriving from the average values Ag.
In the integrodifferential approach, the unknowns J, ,E’) are elim-
inated at the expense of the matrix sparsity. However, notice
that if the source values J,(c’) were known a priori, one could
directly solve equation (4) for A. The basic idea is to represent
the magnetic potential A as the superposition of two linearly
independent solutions of equation (4), obtained by setting unit
source current density in the active electrode and in the ground
conductors successively

2
Az,9) = Y CnAm(z,y). ®

m=1
Owing to the linearity of the operators in (7), equation (5) may
be expanded as
I=(1- jwax‘ihl)ShC1 + (—jwax‘ihz)ShCz

-I= Z(—jwaﬁkl)skcl + Z(l —jwo’/ikg)SkCz ®
k#h k#h

where [ is the total current carried by the active electrode (h-th
electrode) which flows back in the ground conductors, and

Am=i/ Am(z,y)dz dy (10)
Sk Qk

Once equation (9) has been solved for the coefficients C,,, the
unknown potential A may be derived from the superposition
principle (8).

After a suitable choice of the basis functions, the application
of Galerkin’s procedure to the equation (4) yields the following
system of matrix equations [7]

(§—jwoT) Ay =J), m=1,2 an
where J,(,f ) originates from the imposed source current density
distribution on the electrodes, and S, T are sparse matrices,
whose analytic expressions can be found in [7], if Lagrange
polynomials are used to expand the unknown. Notice that the
finite element equation (11) may be efficiently solved for any
source current distribution, once a sparse factorization of its co-
efficient matrix has been obtained. The solution vector A in-
duced by the imposed currents Ji, may be derived from the su-
perposition principle (8) and (9).

III. REDUCED-ORDER MODEL

Since we are concerned with the computation of the circuit
parameters of a line versus frequency, the analysis should be re-
peated for many frequency sampling points in the range of inter-
est. Recently, a novel technique for the numerical generation of
an orthonormalized set of problem-matched basis functions has
been introduced with application to the scattering problem [8].
The basic idea is the generation of problem-specific basis func-
tions based on the exact analysis in a few frequency points cho-
sen in the range of interest. These basis functions are extremely
efficient in the representation of the unknown, thus drastically
reducing the CPU-time. In this paper, the concept of problem-
matched basis functions is applied to eddy-currents computa-
tions.

We evaluate the potential function A, via the standard FEM,
at P frequency points w = w; - - - wp chosen in the band of in-
terest. The FEM solution vectors A(wp) are arranged column-
wise in a matrix X, which is then subjected to the economy-size
Singular Value Decomposition (thin SVD) [11]:

X=UxVvt 12)
The columns of U are the singular vectors, and the diagonal el-
ements of matrix ¥ are the corresponding singular values. The
singular values measure the significance of each singular vec-
tor in the representation of the unknown. Since they range over
several orders of magnitude, not all of them are needed to get
accurate results [3]. Let then ) < P be the number of singu-
lar vectors assumed to be adequate to represent the unknown.
The selected singular vectors define a set of problem-matched
basis functions of the subspace = that contains the potential rep-
resentation, at least in the band of interest. The restriction of the
large-scale equation (11) in the subspace = yields the reduced-
order model
(UéSUQ - jwo UgTUQ) An=ULIY (13
where matrix Ug consists of the first Q singular vectors se-
lected. Equation (13) has size Q x Q, and may be easily solved
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by a direct method for each frequency value. Moreover, by in-
spection of the dynamic range of the singular values, the ac-
curacy level of the procedure can be controlled: if the singular
values have a small dynamic range, not enough information has
been acquired, and the frequency sampling rate should be in-
creased.

IV. EVALUATION OF THE QUASI-TEM LINE PARAMETERS

The evaluation of the quasi-TEM line parameters requires the
solution of the electrostatic problem for the line p.u.l. parallel
admittance and the solution of the eddy-current problem for the
line p.ul. series impedance, as discussed in Section II. The fi-
nite element discretization of Laplace’s equation yields the ma-
trix equation K ¢ = g, where K is a sparse matrix and the
column vector q originates from the applied voltage V, and cor-
responds to the surface charge distribution on the electrodes [5].
Since dielectric losses are described by a frequency-independent
loss tangent, also Laplace’s equation does not depend on fre-
quency. The p.u.l. admittance ) = G + jwC may be computed
from the complex electrostatic stored energy as

(G +juwC) Vi = juw(¢' K ¢). a4

Notice that the p.u.l. conductance G is a linear function of fre-

quency. If, on the other hand, dielectric losses are modeled as

a constant conductivity, Laplace’s equation becomes frequency-

dependent, requiring fast-sweep solution techniques similar to
those described in Section III.

The p.u.l. impedance Z = R + jw/L may be computed from

Y (i) = R+ i)

i (15)

Notice that, once the set of problem-matched basis functions has
been defined, the evaluation of the average values Akm and all
postprocessing computations may be performed directly in the
reduced-order representation.
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Fig. 1. Comparison between the p.u.l. resistance R and p.ul. intemal in-
ductance £; versus frequency of a copper cylindrical wire (radius 7 = 5 mm,
conductivity o = 5.8 x 107 $/m) computed analytically and with the present
numerical approach.

V. RESULTS

In order to show the effectiveness of the proposed numeri-
cal technique, we analyze two different structures, a cylindrical
wire and a coplanar waveguide on a lithium niobate substrate
with application to electro-optic devices. Excellent agreement
is.demonstrated with the full-wave solution, at about one tenth
of its computational cost.

A. Cylindrical wire

We consider a copper cylindrical conductor with radius r =
5mm, and conductivity o = 5.8 x 107 S/m. We have com-
puted the potential function A at the frequency points f =
0.1, 1, 10, 100, 1000 kHz. The singular values range over five
orders of magnitude, which confirms that the frequency sam-
pling rate is adequate to represent the solution over the selected
frequency range. Fig.1 compares the series parameters R and
L; evaluated with their exact analytical expressions [9] and with
the present quasi-static FEM approach with Q = 5 problem-
matched basis functions (all the singular vectors have been re-
tained). The p.u.l. resistance R asymptotically behaves as v/f
in the skin-effect regime, and reaches the DC limit according to
a complex and conductor shape-dependent frequency behaviour.
The p.u.l. internal inductance £; has been computed integrating
the magnetic energy over the conductor cross-section [12]. As it
can be observed, the frequency variations of the circuit param-
eters are represented without loss of accuracy with just @ = §
problem-matched basis functions.
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Fig. 2. Cross section of a ridge-type CPW. The geometrical parameters are:
t=10pm W =8um, G = 15um, tor = 1.2 um, h = 3.3 um, s = 9 um,
a = 70 degrees.

B. Ridge modulator

State-of-the-art electro-optic modulators on LiNbO3 sub-
strates are now reaching bandwith performances in excess of
40 GHz with driving voltages around 5 V. The design and op-
timization of such structures demand precise modeling of their
microwave propagation characteristics because of the contrast-
ing requirements in terms of velocity matching, low microwave
attenuation, and good superposition between the optical and the
microwave fields.

Recently, a novel ridge-type lithium niobate modulator has
been introduced to achieve low drive voltage and broad band
operation [13, 14]. In this structure (see Fig.2), synchronous
coupling with the optical signal is achieved removing the high
dielectric constant lithium niobate around the center conductor,
and inserting a low dielectric constant SiO; buffer layer under-
neath the electrodes.
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The microwave effective index neg, the attenuation constant
a (dB/cm), and the characteristic impedance Z () of the CPW
in Fig. 2 have been computed versus frequency, with the present
approach (QS-FEM) and with the full-wave technique (FW-
FEM) [3]. The results are shown in Fig.3. The gold electrode
conductivity is o = 4.1 x 107 S/m. The relative permittivities
of the Z-cut X-propagating LiNbO3 substrate are 28 and 43 per-
pendicular and parallel to the substrate surface, respectively, and
the lithium niobate loss tangent is tan §; = 0.004. The relative
permittivity of the SiOg buffer layer is €, = 3.90, and the loss
tangent is tan &, = 0.016.

An excellent agreement may be observed between quasi-
static analysis, the full-wave solution [3], and the results pre-
sented in [5]. The small discrepancies, arising at higher fre-
quencies between the quasi-TEM model and full-wave solu-
tions, are related to the onset of higher-order substrate modes.
The electromagnetic behaviour of the waveguiding structure is
accurately represented with @ = 8 problem-matched basis func-
tions, over a bandwidth of 100 GHz.

& FW-FEM

a, dB/cm

real{Z}, Q

45t -30
0.1 1 10
frequency, GHz

Fig. 3. (a) Microwave effective index neg, attenuation o (dB/cm) and (b)
characteristic impedance Z. (S2) of the ridge-type CPW of Fig.2 , computed
with the full-wave FEM approach (FW-FEM), and the present magneto-quasi-
static model (QS-FEM).

VI. CONCLUSION

We have developed a FEM-based fast and accurate reduced-
order model for the computation of the frequency-dependent
characteristic parameters of lossy inhomogeneous transmission
lines. In contrast with conventional quasi-TEM approaches,
the present technique is able to capture the electromagnetic be-
haviour of the waveguiding structure from the low-frequency
RC range to the skin-effect LC regime. Excellent agreement
with full-wave methods is achieved, at a fraction of their com-
putational cost.
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